Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
PLoS One ; 19(2): e0293894, 2024.
Article in English | MEDLINE | ID: mdl-38381741

ABSTRACT

Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases and catalyze the transition of 5mC to 5hmC in DNA. These enzymes have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila as Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by mapping one, Tet DNA-binding sites throughout the genome and two, the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC modifications are distributed along the entire transcript, while Tet DNA-binding sites are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are preferentially involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs primarily in cells of the nervous system.


Subject(s)
Cytosine , Dioxygenases , Animals , Cytosine/metabolism , Drosophila/genetics , Drosophila/metabolism , DNA Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Axon Guidance , DNA-Binding Proteins/metabolism , 5-Methylcytosine/metabolism , DNA/metabolism , Dioxygenases/genetics
2.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38065062

ABSTRACT

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Subject(s)
Leukemia , Myelodysplastic Syndromes , Neoplasms , RNA Methylation , Serine-Arginine Splicing Factors , Humans , Leukemia/genetics , Myelodysplastic Syndromes/genetics , Neoplasms/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Serine-Arginine Splicing Factors/genetics , RNA Methylation/genetics
3.
J Exp Clin Cancer Res ; 42(1): 78, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36998085

ABSTRACT

BACKGROUND: Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate. METHODS: Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts. RESULTS: GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival. CONCLUSION: This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.


Subject(s)
DNA Methylation , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Pyruvaldehyde/metabolism , Cell Line, Tumor , Transcriptome , Gene Expression Regulation, Neoplastic
4.
Res Sq ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36824980

ABSTRACT

Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases enzymes catalyzing the transition of 5mC to 5hmC in DNA and have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila because Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by determining Tet DNA-binding sites throughout the genome and by mapping the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC-modified sites can be found along the entire transcript and are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are frequently involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and are sensitized to reduced levels of slit. Both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs, primarily in developing nerve cells.

5.
bioRxiv ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-36711932

ABSTRACT

Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases and catalyze the transition of 5mC to 5hmC in DNA. These enzymes have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila as Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by mapping one, Tet DNA-binding sites throughout the genome and two, the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC modifications are distributed along the entire transcript, while Tet DNA-binding sites are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are preferentially involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs primarily in cells of the nervous system.

6.
Epigenetics ; 17(13): 2434-2454, 2022 12.
Article in English | MEDLINE | ID: mdl-36354000

ABSTRACT

Illumina Infinium DNA Methylation (5mC) arrays are a popular technology for low-cost, high-throughput, genome-scale measurement of 5mC distribution, especially in cancer and other complex diseases. After the success of its HumanMethylation450 array (450k), Illumina released the MethylationEPIC array (850k) featuring increased coverage of enhancers. Despite the widespread use of 850k, analysis of the corresponding data remains suboptimal: it still relies mostly on Illumina's default annotation, which underestimates enhancerss and long noncoding RNAs. Results: We have thus developed an approach, based on the ENCODE and LNCipedia databases, which greatly improves upon Illumina's default annotation of enhancers and long noncoding transcripts. We compared the re-annotated 850k with both 450k and reduced-representation bisulphite sequencing (RRBS), another high-throughput 5mC profiling technology. We found 850k to cover at least three times as many enhancers and long noncoding RNAs as either 450k or RRBS. We further investigated the reproducibility of the three technologies, applying various normalization methods to the 850k data. Most of these methods reduced variability to a level below that of RRBS data. We then used 850k with our new annotation and normalization to profile 5mC changes in breast cancer biopsies. 850k highlighted aberrant enhancer methylation as the predominant feature, in agreement with previous reports. Our study provides an updated processing approach for 850k data, based on refined probe annotation and normalization, allowing for improved analysis of methylation at enhancers and long noncoding RNA genes. Our findings will help to further advance understanding of the DNA methylome in health and disease.


Subject(s)
DNA Methylation , RNA, Long Noncoding , Humans , CpG Islands , RNA, Long Noncoding/genetics , Oligonucleotide Array Sequence Analysis/methods , Benchmarking , Reproducibility of Results
7.
EBioMedicine ; 79: 103985, 2022 May.
Article in English | MEDLINE | ID: mdl-35429693

ABSTRACT

BACKGROUND: The multiplicity, heterogeneity, and dynamic nature of human immunodeficiency virus type-1 (HIV-1) latency mechanisms are reflected in the current lack of functional cure for HIV-1. Accordingly, all classes of latency-reversing agents (LRAs) have been reported to present variable ex vivo potencies. Here, we investigated the molecular mechanisms underlying the potency variability of one LRA: the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC). METHODS: We employed epigenetic interrogation methods (electrophoretic mobility shift assays, chromatin immunoprecipitation, Infinium array) in complementary HIV-1 infection models (latently-infected T-cell line models, primary CD4+ T-cell models and ex vivo cultures of PBMCs from HIV+ individuals). Extracellular staining of cell surface receptors and intracellular metabolic activity were measured in drug-treated cells. HIV-1 expression in reactivation studies was explored by combining the measures of capsid p24Gag protein, green fluorescence protein signal, intracellular and extracellular viral RNA and viral DNA. FINDINGS: We uncovered specific demethylation CpG signatures induced by 5-AzadC in the HIV-1 promoter. By analyzing the binding modalities to these CpG, we revealed the recruitment of the epigenetic integrator Ubiquitin-like with PHD and RING finger domain 1 (UHRF1) to the HIV-1 promoter. We showed that UHRF1 redundantly binds to the HIV-1 promoter with different binding modalities where DNA methylation was either non-essential, essential or enhancing UHRF1 binding. We further demonstrated the role of UHRF1 in the epigenetic repression of the latent viral promoter by a concerted control of DNA and histone methylations. INTERPRETATION: A better understanding of the molecular mechanisms of HIV-1 latency allows for the development of innovative antiviral strategies. As a proof-of-concept, we showed that pharmacological inhibition of UHRF1 in ex vivo HIV+ patient cell cultures resulted in potent viral reactivation from latency. Together, we identify UHRF1 as a novel actor in HIV-1 epigenetic silencing and highlight that it constitutes a new molecular target for HIV-1 cure strategies. FUNDING: Funding was provided by the Belgian National Fund for Scientific Research (F.R.S.-FNRS, Belgium), the « Fondation Roi Baudouin ¼, the NEAT (European AIDS Treatment Network) program, the Internationale Brachet Stiftung, ViiV Healthcare, the Télévie, the Walloon Region (« Fonds de Maturation ¼), « Les Amis des Instituts Pasteur à Bruxelles, asbl ¼, the University of Brussels (Action de Recherche Concertée ULB grant), the Marie Skodowska Curie COFUND action, the European Union's Horizon 2020 research and innovation program under grant agreement No 691119-EU4HIVCURE-H2020-MSCA-RISE-2015, the French Agency for Research on AIDS and Viral Hepatitis (ANRS), the Sidaction and the "Alsace contre le Cancer" Foundation. This work is supported by 1UM1AI164562-01, co-funded by National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institute on Drug Abuse and the National Institute of Allergy and Infectious Diseases.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Epigenetic Repression , HIV Infections , HIV-1 , Ubiquitin-Protein Ligases , Virus Latency , Acquired Immunodeficiency Syndrome , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Decitabine/metabolism , HIV Infections/genetics , HIV-1/physiology , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Virus Latency/genetics
8.
Epigenetics ; 17(4): 422-443, 2022 04.
Article in English | MEDLINE | ID: mdl-33960278

ABSTRACT

Ten-Eleven Translocation (TET) proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) leading to a dynamic epigenetic state of DNA that can influence transcription and chromatin organization. While TET proteins interact with complexes involved in transcriptional repression and activation, the overall understanding of the molecular mechanisms involved in TET-mediated regulation of gene expression still remains limited. Here, we show that TET proteins interact with the chromatin remodelling protein lymphoid-specific helicase (LSH/HELLS) in vivo and in vitro. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (ESCs) knock out of Lsh leads to a significant reduction of 5-hydroxymethylation amount in the DNA. Whole genome sequencing of 5hmC in wild-type versus Lsh knock-out MEFs and ESCs showed that in absence of Lsh, some regions of the genome gain 5hmC while others lose it, with mild correlation with gene expression changes. We further show that differentially hydroxymethylated regions did not completely overlap with differentially methylated regions indicating that changes in 5hmC distribution upon Lsh knock-out are not a direct consequence of 5mC decrease. Altogether, our results suggest that LSH, which interacts with TET proteins, contributes to the regulation of 5hmC levels and distribution in MEFs and ESCs.


Subject(s)
Chromatin Assembly and Disassembly , DNA Methylation , 5-Methylcytosine/metabolism , Animals , Cytosine/metabolism , DNA/metabolism , DNA Helicases/metabolism , Fibroblasts/metabolism , Genome , Mice
9.
J Neuropathol Exp Neurol ; 80(7): 663-673, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34363673

ABSTRACT

Intramedullary astrocytomas (IMAs) consist of a heterogeneous group of rare central nervous system (CNS) tumors associated with variable outcomes. A DNA methylation-based classification approach has recently emerged as a powerful tool to further classify CNS tumors. However, no DNA methylation-related studies specifically addressing to IMAs have been performed yet. In the present study, we analyzed 16 IMA samples subjected to morphological and molecular analyses, including DNA methylation profiling. Among the 16 samples, only 3 cases were classified in a reference methylation class (MC) with the recommended calibrated score (≥0.9). The remaining cases were either considered "no-match" cases (calibrated score <0.3, n = 7) or were classified with low calibrated scores (ranging from 0.32 to 0.53, n = 6), including inconsistent classification. To obtain a more comprehensive tool for pathologists, we used different unsupervised analyses of DNA methylation profiles, including our data and those from the Heidelberg reference cohort. Even though our cohort included only 16 cases, hypotheses regarding IMA-specific classification were underlined; a potential specific MC of PA_SPINE was identified and high-grade IMAs, probably consisting of H3K27M wild-type IMAs, were mainly associated with ANA_PA MC. These hypotheses strongly suggest that a specific classification for IMAs has to be investigated.


Subject(s)
Astrocytoma/genetics , DNA Methylation , Spinal Cord Neoplasms/genetics , Adolescent , Adult , Aged , Astrocytoma/diagnosis , Child , Female , Humans , Male , Middle Aged , Spinal Cord Neoplasms/diagnosis
10.
Nat Cancer ; 2(6): 611-628, 2021 06.
Article in English | MEDLINE | ID: mdl-35121941

ABSTRACT

Post-transcriptional modifications of RNA constitute an emerging regulatory layer of gene expression. The demethylase fat mass- and obesity-associated protein (FTO), an eraser of N6-methyladenosine (m6A), has been shown to play a role in cancer, but its contribution to tumor progression and the underlying mechanisms remain unclear. Here, we report widespread FTO downregulation in epithelial cancers associated with increased invasion, metastasis and worse clinical outcome. Both in vitro and in vivo, FTO silencing promotes cancer growth, cell motility and invasion. In human-derived tumor xenografts (PDXs), FTO pharmacological inhibition favors tumorigenesis. Mechanistically, we demonstrate that FTO depletion elicits an epithelial-to-mesenchymal transition (EMT) program through increased m6A and altered 3'-end processing of key mRNAs along the Wnt signaling cascade. Accordingly, FTO knockdown acts via EMT to sensitize mouse xenografts to Wnt inhibition. We thus identify FTO as a key regulator, across epithelial cancers, of Wnt-triggered EMT and tumor progression and reveal a therapeutically exploitable vulnerability of FTO-low tumors.


Subject(s)
Neoplasms, Glandular and Epithelial , RNA , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Down-Regulation/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Mice
11.
Nat Commun ; 11(1): 4956, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009383

ABSTRACT

Tet-enzyme-mediated 5-hydroxymethylation of cytosines in DNA plays a crucial role in mouse embryonic stem cells (ESCs). In RNA also, 5-hydroxymethylcytosine (5hmC) has recently been evidenced, but its physiological roles are still largely unknown. Here we show the contribution and function of this mark in mouse ESCs and differentiating embryoid bodies. Transcriptome-wide mapping in ESCs reveals hundreds of messenger RNAs marked by 5hmC at sites characterized by a defined unique consensus sequence and particular features. During differentiation a large number of transcripts, including many encoding key pluripotency-related factors (such as Eed and Jarid2), show decreased cytosine hydroxymethylation. Using Tet-knockout ESCs, we find Tet enzymes to be partly responsible for deposition of 5hmC in mRNA. A transcriptome-wide search further reveals mRNA targets to which Tet1 and Tet2 bind, at sites showing a topology similar to that of 5hmC sites. Tet-mediated RNA hydroxymethylation is found to reduce the stability of crucial pluripotency-promoting transcripts. We propose that RNA cytosine 5-hydroxymethylation by Tets is a mark of transcriptome flexibility, inextricably linked to the balance between pluripotency and lineage commitment.


Subject(s)
5-Methylcytosine/analogs & derivatives , Cell Differentiation , DNA-Binding Proteins/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Proto-Oncogene Proteins/metabolism , RNA/metabolism , 5-Methylcytosine/metabolism , Animals , Antibody Specificity/immunology , Base Sequence , Dioxygenases , Embryoid Bodies/metabolism , Mice , Models, Biological , Pluripotent Stem Cells/metabolism , Protein Binding , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
12.
Clin Epigenetics ; 12(1): 116, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32736653

ABSTRACT

BACKGROUND: Identification of islet ß cell death prior to the onset of type 1 diabetes (T1D) or type 2 diabetes (T2D) might allow for interventions to protect ß cells and reduce diabetes risk. Circulating unmethylated DNA fragments arising from the human INS gene have been proposed as biomarkers of ß cell death, but this gene alone may not be sufficiently specific to report ß cell death. RESULTS: To identify new candidate genes whose CpG sites may show greater specificity for ß cells, we performed unbiased DNA methylation analysis using the Infinium HumanMethylation 450 array on 64 human islet preparations and 27 non-islet human tissues. For verification of array results, bisulfite DNA sequencing of human ß cells and 11 non-ß cell tissues was performed on 5 of the top 10 CpG sites that were found to be differentially methylated. We identified the CHTOP gene as a candidate whose CpGs show a greater frequency of unmethylation in human islets. A digital PCR strategy was used to determine the methylation pattern of CHTOP and INS CpG sites in primary human tissues. Although both INS and CHTOP contained unmethylated CpG sites in non-islet tissues, they occurred in a non-overlapping pattern. Based on Naïve Bayes classifier analysis, the two genes together report 100% specificity for islet damage. Digital PCR was then performed on cell-free DNA from serum from human subjects. Compared to healthy controls (N = 10), differentially methylated CHTOP and INS levels were higher in youth with new onset T1D (N = 43) and, unexpectedly, in healthy autoantibody-negative youth who have first-degree relatives with T1D (N = 23). When tested in lean (N = 32) and obese (N = 118) youth, increased levels of unmethylated INS and CHTOP were observed in obese individuals. CONCLUSION: Our data suggest that concurrent measurement of circulating unmethylated INS and CHTOP has the potential to detect islet death in youth at risk for both T1D and T2D. Our data also support the use of multiple parameters to increase the confidence of detecting islet damage in individuals at risk for developing diabetes.


Subject(s)
Cell Death/genetics , Cell-Free Nucleic Acids/blood , Diabetes Mellitus/blood , Insulin/blood , Islets of Langerhans , Nuclear Proteins/blood , Pediatric Obesity/blood , Transcription Factors/blood , Cell-Free Nucleic Acids/genetics , Child , Diabetes Mellitus/genetics , Female , Humans , Insulin/genetics , Male , Nuclear Proteins/genetics , Pediatric Obesity/genetics , Transcription Factors/genetics
13.
Cancer Res ; 79(3): 482-494, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30538121

ABSTRACT

Although numerous epigenetic aberrancies accumulate in melanoma, their contribution to initiation and progression remain unclear. The epigenetic mark 5-hydroxymethylcytosine (5hmC), generated through TET-mediated DNA modification, is now referred to as the sixth base of DNA and has recently been reported as a potential biomarker for multiple types of cancer. Loss of 5hmC is an epigenetic hallmark of melanoma, but whether a decrease in 5hmc levels contributes directly to pathogenesis or whether it merely results from disease progression-associated epigenetic remodeling remains to be established. Here, we show that NRAS-driven melanomagenesis in mice is accompanied by an overall decrease in 5hmC and specific 5hmC gains in selected gene bodies. Strikingly, genetic ablation of Tet2 in mice cooperated with oncogenic NRASQ61K to promote melanoma initiation while suppressing specific gains in 5hmC. We conclude that TET2 acts as a barrier to melanoma initiation and progression, partly by promoting 5hmC gains in specific gene bodies. SIGNIFICANCE: This work emphasizes the importance of epigenome plasticity in cancer development and highlights the involvement of druggable epigenetic factors in cancer.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA-Binding Proteins/genetics , Melanoma, Experimental/genetics , Proto-Oncogene Proteins/genetics , Skin Neoplasms/genetics , 5-Methylcytosine/metabolism , Animals , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , DNA-Binding Proteins/metabolism , Dioxygenases , Disease Progression , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Rats
14.
Oncotarget ; 9(45): 27605-27629, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29963224

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers in humans and a leading cause of cancer-related deaths worldwide. As in the case of other cancers, CRC heterogeneity leads to a wide range of clinical outcomes and complicates therapy. Over the years, multiple factors have emerged as markers of CRC heterogeneity, improving tumor classification and selection of therapeutic strategies. Understanding the molecular mechanisms underlying this heterogeneity remains a major challenge. A considerable research effort is therefore devoted to identifying additional features of colorectal tumors, in order to better understand CRC etiology and to multiply therapeutic avenues. Recently, long noncoding RNAs (lncRNAs) have emerged as important players in physiological and pathological processes, including CRC. Here we looked for lncRNAs that might contribute to the various colorectal tumor phenotypes. We thus monitored the expression of 4898 lncRNA genes across 566 CRC samples and identified 282 lncRNAs reflecting CRC heterogeneity. We then inferred potential functions of these lncRNAs. Our results highlight lncRNAs that may participate in the major processes altered in distinct CRC cases, such as WNT/ß-catenin and TGF-ß signaling, immunity, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. For several candidates, we provide experimental evidence supporting our functional predictions that they may be involved in the cell cycle or the EMT. Overall, our work identifies lncRNAs associated with key CRC characteristics and provides insights into their respective functions. Our findings constitute a further step towards understanding the contribution of lncRNAs to CRC heterogeneity. They may open new therapeutic opportunities.

15.
Sci Adv ; 4(6): eaap7309, 2018 06.
Article in English | MEDLINE | ID: mdl-29938218

ABSTRACT

Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.


Subject(s)
Gene Expression Regulation, Neoplastic , Immunity , Mixed Function Oxygenases/genetics , NF-kappa B/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Proto-Oncogene Proteins/genetics , Adaptive Immunity , Biomarkers , DNA Methylation , Epigenesis, Genetic , Gene Expression Profiling , Humans , Immunity, Innate , Neoplasms/pathology , Neoplasms, Basal Cell/etiology , Neoplasms, Basal Cell/metabolism , Neoplasms, Basal Cell/pathology , Promoter Regions, Genetic , Protein Binding
16.
Elife ; 72018 02 28.
Article in English | MEDLINE | ID: mdl-29488879

ABSTRACT

Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 3 Subunit/metabolism , Cytomegalovirus Infections/immunology , DNA-Binding Proteins/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Transcription Factors/metabolism , Adult , Animals , Cells, Cultured , Female , Gene Expression Regulation , Humans , Male , Mice , Middle Aged
17.
J Clin Invest ; 127(8): 3090-3102, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28714863

ABSTRACT

BACKGROUND: The tumor immune response is increasingly associated with better clinical outcomes in breast and other cancers. However, the evaluation of tumor-infiltrating lymphocytes (TILs) relies on histopathological measurements with limited accuracy and reproducibility. Here, we profiled DNA methylation markers to identify a methylation of TIL (MeTIL) signature that recapitulates TIL evaluations and their prognostic value for long-term outcomes in breast cancer (BC). METHODS: MeTIL signature scores were correlated with clinical endpoints reflecting overall or disease-free survival and a pathologic complete response to preoperative anthracycline therapy in 3 BC cohorts from the Jules Bordet Institute in Brussels and in other cancer types from The Cancer Genome Atlas. RESULTS: The MeTIL signature measured TIL distributions in a sensitive manner and predicted survival and response to chemotherapy in BC better than did histopathological assessment of TILs or gene expression-based immune markers, respectively. The MeTIL signature also improved the prediction of survival in other malignancies, including melanoma and lung cancer. Furthermore, the MeTIL signature predicted differences in survival for malignancies in which TILs were not known to have a prognostic value. Finally, we showed that MeTIL markers can be determined by bisulfite pyrosequencing of small amounts of DNA from formalin-fixed, paraffin-embedded tumor tissue, supporting clinical applications for this methodology. CONCLUSIONS: This study highlights the power of DNA methylation to evaluate tumor immune responses and the potential of this approach to improve the diagnosis and treatment of breast and other cancers. FUNDING: This work was funded by the Fonds National de la Recherche Scientifique (FNRS) and Télévie, the INNOVIRIS Brussels Region BRUBREAST Project, the IUAP P7/03 program, the Belgian "Foundation against Cancer," the Breast Cancer Research Foundation (BCRF), and the Fonds Gaston Ithier.


Subject(s)
Breast Neoplasms/diagnosis , DNA Methylation , Aged , Anthracyclines/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Separation , Cohort Studies , Combined Modality Therapy , Disease-Free Survival , Female , Humans , Immune System , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/cytology , Male , Melanoma/diagnosis , Melanoma/genetics , Melanoma/therapy , Middle Aged , Preoperative Period , Prognosis , Proportional Hazards Models , Sequence Analysis, DNA , Skin Neoplasms/diagnosis , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Treatment Outcome
18.
Eur J Immunol ; 47(1): 168-179, 2017 01.
Article in English | MEDLINE | ID: mdl-27861791

ABSTRACT

The forkhead box P1 (FOXP1) transcription factor has been shown to regulate the generation and maintenance of quiescent naïve murine T cells. In humans, FOXP1 expression has been correlated with overall survival in patients with peripheral T-cell lymphoma (PTCL), although its regulatory role in T-cell function is currently unknown. We found that FOXP1 is normally expressed in all human leukocyte subpopulations. Focusing on primary human CD4+ T cells, we show that nuclear expression of FOXP1 predominates in naïve cells with significant downregulation detected in memory cells from blood and tonsils. FOXP1 is repressed following in vitro T-cell activation of naïve T cells, and later re-established in memory CD4+ T cells, albeit at lower levels. DNA methylation analysis revealed that epigenetic mechanisms participate in regulating the human FOXP1 gene. ShRNA-mediated FOXP1 repression induces CD4+ T cells to enter the cell cycle, acquire memory-like markers and upregulate helper T-cell differentiation genes. In patients with lymphoproliferative disorders, FOXP1 expression is constitutionally repressed in the clonal T cells in parallel with overexpression of helper T-cell differentiation genes. Collectively, these data identify FOXP1 as an essential transcriptional regulator for primary human CD4+ T cells and suggest its potential important role in the development of PTCL.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Forkhead Transcription Factors/metabolism , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/metabolism , Repressor Proteins/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Biomarkers , Cell Cycle/genetics , Cell Line , DNA Methylation , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Gene Expression , Gene Expression Regulation , Humans , Immunophenotyping , Leukocytes/immunology , Leukocytes/metabolism , Lymphocyte Activation/immunology , Lymphoproliferative Disorders/genetics , Phenotype , Promoter Regions, Genetic , Receptors, Antigen, T-Cell/metabolism , Repressor Proteins/genetics
19.
Sci Adv ; 2(9): e1600220, 2016 09.
Article in English | MEDLINE | ID: mdl-27617288

ABSTRACT

Evidence is emerging that long noncoding RNAs (lncRNAs) may play a role in cancer development, but this role is not yet clear. We performed a genome-wide transcriptional survey to explore the lncRNA landscape across 995 breast tissue samples. We identified 215 lncRNAs whose genes are aberrantly expressed in breast tumors, as compared to normal samples. Unsupervised hierarchical clustering of breast tumors on the basis of their lncRNAs revealed four breast cancer subgroups that correlate tightly with PAM50-defined mRNA-based subtypes. Using multivariate analysis, we identified no less than 210 lncRNAs prognostic of clinical outcome. By analyzing the coexpression of lncRNA genes and protein-coding genes, we inferred potential functions of the 215 dysregulated lncRNAs. We then associated subtype-specific lncRNAs with key molecular processes involved in cancer. A correlation was observed, on the one hand, between luminal A-specific lncRNAs and the activation of phosphatidylinositol 3-kinase, fibroblast growth factor, and transforming growth factor-ß pathways and, on the other hand, between basal-like-specific lncRNAs and the activation of epidermal growth factor receptor (EGFR)-dependent pathways and of the epithelial-to-mesenchymal transition. Finally, we showed that a specific lncRNA, which we called CYTOR, plays a role in breast cancer. We confirmed its predicted functions, showing that it regulates genes involved in the EGFR/mammalian target of rapamycin pathway and is required for cell proliferation, cell migration, and cytoskeleton organization. Overall, our work provides the most comprehensive analyses for lncRNA in breast cancers. Our findings suggest a wide range of biological functions associated with lncRNAs in breast cancer and provide a foundation for functional investigations that could lead to new therapeutic approaches.


Subject(s)
Breast Neoplasms/genetics , Genome, Human , Neoplasm Proteins/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Breast Neoplasms/pathology , Cell Movement/genetics , Cell Proliferation/genetics , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , RNA, Long Noncoding/isolation & purification
20.
Oncotarget ; 7(37): 58939-58952, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27449289

ABSTRACT

DNA methylation and histone modifications are key epigenetic regulators of gene expression, and tight connections are known between the two. DNA methyltransferases are upregulated in several tumors and aberrant DNA methylation profiles are a cancer hallmark. On the other hand, histone demethylases are upregulated in cancer cells. Previous work on ES cells has shown that the lysine demethylase KDM1A binds to DNMT1, thereby affecting DNA methylation. In cancer cells, the occurrence of this interaction has not been explored. Here we demonstrate in several tumor cell lines an interaction between KDM1A and both DNMT1 and DNMT3B. Intriguingly and in contrast to what is observed in ES cells, KDM1A depletion in cancer cells was found not to trigger any reduction in the DNMT1 or DNMT3B protein level or any change in DNA methylation. In the S-phase, furthermore, KDM1A and DNMT1 were found, to co-localize within the heterochromatin. Using P-LISA, we revealed substantially increased binding of KDM1A to DNMT1 during the S-phase. Together, our findings propose a mechanistic link between KDM1A and DNA methyltransferases in cancer cells and suggest that the KDM1A/DNMT1 interaction may play a role during replication. Our work also strengthens the idea that DNMTs can exert functions unrelated to act on DNA methylation.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Histone Demethylases/metabolism , Neoplasms/metabolism , S Phase Cell Cycle Checkpoints , Animals , Carcinogenesis , DNA Methylation , HeLa Cells , Histone Demethylases/genetics , Histones/metabolism , Humans , Lysine , Mice , NIH 3T3 Cells , Protein Binding , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL
...